In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail
نویسندگان
چکیده
Magnetic reconnection is one of the most important processes in astrophysical, space and laboratory plasmas. Identifying the structure around the point at which the magnetic field lines break and subsequently reform, known as the magnetic null point, is crucial to improving our understanding reconnection. But owing to the inherently three-dimensional nature of this process, magnetic nulls are only detectable through measurements obtained simultaneously from at least four points in space. Using data collected by the four spacecraft of the Cluster constellation as they traversed a diffusion region in the Earth's magnetotail on 15 September, 2001, we report here the first in situ evidence for the structure of an isolated magnetic null. The results indicate that it has a positive-spiral structure whose spatial extent is of the same order as the local ion inertial length scale, suggesting that the Hall effect could play an important role in 3D reconnection dynamics.
منابع مشابه
Energy partition in magnetic reconnection in Earth's magnetotail.
The partition of energy flux in magnetic reconnection is examined experimentally using Cluster satellite observations of collisionless reconnection in Earth's magnetotail. In this plasma regime, the dominant component of the energy flux is ion enthalpy flux, with smaller contributions from the electron enthalpy and heat flux and the ion kinetic energy flux. However, the Poynting flux is not neg...
متن کاملAsymmetry of the ion diffusion region Hall electric and magnetic fields during guide field reconnection: observations and comparison with simulations.
In situ measurements of magnetic reconnection in the Earth's magnetotail are presented showing that even a moderate guide field (20% of the reconnecting field) considerably distorts ion diffusion region structure. The Hall magnetic and electric fields are asymmetric and shunted away from the current sheet; an appropriately scaled particle-in-cell simulation is found to be in excellent agreement...
متن کاملStrong rapid dipolarizations in Saturn’s magnetotail: In situ evidence of reconnection
[1] The oppositely directed magnetic field in the kronian magnetic tail is expected eventually to reconnect across the current sheet, allowing plasma to escape in an anti-solar direction down the tail. This reconnection process accelerates ions and electrons both toward and away from the planet, allowing the magnetotail to relax to a more dipolar configuration. Previous missions to Saturn shed ...
متن کاملبررسی شتابدهی ذرات باردار از طریق بازاتصالی مغناطیسی در محیطهای پلاسمایی
Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...
متن کاملEquations of state for collisionless guide-field reconnection.
Direct in situ observation of magnetic reconnection in the Earth's magnetotail as well as kinetic numerical studies have recently shown that the electron pressure in a collisionless reconnection region is strongly anisotropic. This anisotropy is mainly caused by the trapping of electrons in parallel electric fields. We present new equations of state for the parallel and perpendicular pressures ...
متن کامل